Module scrilla.analysis.plotter

Expand source code
import os
import datetime
from typing import Dict, List, Union
import numpy
import matplotlib
from PIL import Image

from matplotlib.figure import Figure
from matplotlib import dates as mdates
from matplotlib.ticker import PercentFormatter
from numpy.lib.function_base import average

from scrilla import settings
from scrilla.static import formats, keys
from scrilla.analysis.objects.portfolio import Portfolio
from scrilla.analysis.objects.cashflow import Cashflow
from scrilla.errors import InputValidationError
from scrilla.util import dater

if settings.APP_ENV == 'local':
    from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
    matplotlib.use("Qt5Agg")
elif settings.APP_ENV == 'container':
    from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
    matplotlib.use("agg")


def _show_or_save(canvas: FigureCanvas, show: bool = True, savefile: str = None) -> Union[FigureCanvas, None]:
    if savefile is not None:
        canvas.print_jpeg(filename_or_obj=savefile)

    s, (width, height) = canvas.print_to_buffer()
    im = Image.frombytes("RGBA", (width, height), s)

    if show:
        im.show()
        return None
    canvas.draw()
    return canvas


def plot_qq_series(ticker: str, qq_series: list, show: bool = True, savefile: str = None) -> Union[FigureCanvas, None]:
    title = f'{ticker} Return Q-Q Plot'
    normal_series = []
    sample_series = []
    for point in qq_series:
        normal_series.append(point[0])
        sample_series.append(point[1])

    canvas = FigureCanvas(Figure())
    axes = canvas.figure.subplots()

    axes.plot(normal_series, sample_series,
              linestyle="None", marker=".", markersize=10.0)
    # axes.plot(normal_series, normal_series)
    axes.grid()
    axes.set_xlabel('Normal Percentiles')
    axes.set_ylabel('Sample Percentiles')
    axes.set_title(title)

    return _show_or_save(canvas=canvas, show=show, savefile=savefile)


def plot_correlation_series(tickers: list, series: dict, show: bool = True, savefile: str = None) -> Union[FigureCanvas, None]:
    start, end = list(series.keys())[-1], list(series.keys())[0]
    title = f'({tickers[0]}, {tickers[1]}) correlation time series'
    subtitle = f'{start} to {end}, rolling {settings.DEFAULT_ANALYSIS_PERIOD}-day estimate'

    canvas = FigureCanvas(Figure())
    figure = canvas.figure
    axes = figure.subplots()

    locator = mdates.AutoDateLocator()
    formatter = mdates.AutoDateFormatter(locator)

    correl_history, dates = [], []
    for date in series:
        dates.append(dater.parse(date))
        correl_history.append(series[date])

    axes.plot(dates, correl_history)
    axes.grid()
    axes.xaxis.set_major_locator(locator)
    axes.xaxis.set_major_formatter(formatter)
    axes.set_ylabel('Correlation')
    axes.set_xlabel('Dates')
    axes.set_title(subtitle, fontsize=12)
    figure.suptitle(title, fontsize=18)
    figure.autofmt_xdate()

    return _show_or_save(canvas=canvas, show=show, savefile=savefile)


def plot_frontier(portfolio: Portfolio, frontier: list, show: bool = True, savefile: str = None) -> Union[FigureCanvas, None]:
    title = " ("
    for i, item in enumerate(portfolio.tickers):
        if i != (len(portfolio.tickers) - 1):
            title += item + ", "
        else:
            title += item + ") Efficient Frontier"

    return_profile, risk_profile = [], []
    for allocation in frontier:
        return_profile.append(portfolio.return_function(allocation))
        risk_profile.append(portfolio.volatility_function(allocation))

    canvas = FigureCanvas(Figure())
    axes = canvas.figure.subplots()

    axes.plot(risk_profile, return_profile, linestyle='dashed')
    axes.grid()
    axes.set_xlabel('Volatility')
    axes.set_ylabel('Return')
    axes.set_title(title)

    return _show_or_save(canvas=canvas, show=show, savefile=savefile)


def plot_yield_curve(yield_curve: Dict[str, List[float]], show: bool = True, savefile: str = None) -> Union[FigureCanvas, None]:
    title = f'US Treasury Yield Curve On {list(yield_curve.keys())[0]}'

    canvas = FigureCanvas(Figure())
    axes = canvas.figure.subplots()

    maturities, rates = [], yield_curve[list(yield_curve.keys())[0]]
    yield_map = keys.keys['SERVICES']['STATISTICS']['QUANDL']['MAP']['YIELD_CURVE']
    for i in range(len(rates)):
        maturities.append(yield_map[keys.keys['YIELD_CURVE'][i]])

    axes.plot(maturities, rates, linestyle="dashed",
              marker=".", markersize=10.0)
    axes.grid()
    axes.set_xlabel('Maturity')
    axes.set_ylabel('Annual Yield %')
    axes.set_title(title)

    return _show_or_save(canvas=canvas, show=show, savefile=savefile)


def plot_return_histogram(ticker: str, sample: List[float], show: bool = True, savefile: str = None) -> Union[FigureCanvas, None]:
    canvas = FigureCanvas(Figure())
    axes = canvas.figure.subplots()

    axes.hist(x=sample, bins=formats.formats['BINS'], density=True)
    axes.xaxis.set_major_formatter(PercentFormatter(xmax=1))
    axes.set_title(f'Distribution of {ticker} Returns')
    axes.set_xlabel('Daily Return')

    return _show_or_save(canvas=canvas, show=show, savefile=savefile)


def plot_profiles(symbols: List[str], profiles: Dict[str, Dict[str, float]], show: bool = True, savefile: str = None, subtitle: str = None) -> Union[FigureCanvas, None]:
    canvas = FigureCanvas(Figure())

    no_symbols = len(symbols)
    axes = canvas.figure.subplots()

    title = "("
    for symbol in symbols:
        if symbols.index(symbol) != (len(symbols)-1):
            title += symbol + ", "
        else:
            title += symbol + ') Risk-Return Profile'
            if subtitle is not None:
                title += "\n" + subtitle

    return_profile, risk_profile = [], []
    for profile in profiles:
        return_profile.append(profiles[profile]['annual_return'])
        risk_profile.append(profiles[profile]['annual_volatility'])

    axes.plot(risk_profile, return_profile,
              linestyle='None', marker=".", markersize=10.0)
    axes.grid()
    axes.set_xlabel('Volatility')
    axes.set_ylabel('Return')
    axes.set_title(title)

    for i in range(no_symbols):
        axes.annotate(symbols[i], (risk_profile[i], return_profile[i]))

    return _show_or_save(canvas=canvas, show=show, savefile=savefile)

    # TODO: figure out date formatting for x-axis


def plot_moving_averages(ticker: str, averages: Dict[str, Dict[str, float]], show: bool = False, savefile: str = None):
    canvas = FigureCanvas(Figure())
    axes = canvas.figure.subplots()

    date_format = matplotlib.dates.DateFormatter('%m-%d')

    ma1s, ma2s, ma3s, date_range = [], [], [], []
    ma1_label, ma2_label, ma3_label = None, None, None

    for this_date, these_averages in averages.items():
        if ma1_label is None:
            ma1_label = list(these_averages.keys())[0]
        if ma2_label is None:
            ma2_label = list(these_averages.keys())[1]
        if ma3_label is None:
            ma3_label = list(these_averages.keys())[2]
        ma1s.append(list(these_averages.values())[0])
        ma2s.append(list(these_averages.values())[1])
        ma3s.append(list(these_averages.values())[2])
        if len(averages) == 1:
            date_range.append(this_date)
        else:
            date_range.append(datetime.datetime.strptime(
                this_date, '%Y-%m-%d').toordinal())

    if len(averages) == 1:
        width = formats.formats['BAR_WIDTH']
        x = numpy.arange(1)
        axes.bar(x + width, ma1s, width, color="darkgreen", label=ma1_label)
        axes.bar(x, ma2s, width, color="gold", label=ma2_label)
        axes.bar(x - width, ma3s, width, color="orangered", label=ma3_label)
        axes.set_xticks(x)
        axes.set_xticklabels([str(date_range[0])])

    else:
        x = date_range
        axes.plot(x, ma1s, linestyle="solid",
                  color="darkgreen", label=ma1_label)
        axes.plot(x, ma2s, linestyle="dotted",
                  color="gold", label=ma2_label)
        axes.plot(x, ma3s, linestyle="dashdot",
                  color="orangered", label=ma3_label)
        axes.set_xticks(x)
        date_locator = matplotlib.dates.WeekdayLocator(
            byweekday=(matplotlib.dates.WE))
        axes.xaxis.set_major_locator(date_locator)
        axes.xaxis.set_major_formatter(date_format)

    axes.set_ylabel('Annualized Logarthmic Return %')
    axes.set_xlabel('Dates')
    axes.set_title(
        f'{ticker} Annualized Return Moving Averages')
    axes.legend()
    return _show_or_save(canvas=canvas, show=show, savefile=savefile)


def plot_cashflow(ticker: str, cashflow: Cashflow, show: bool = True, savefile: str = None) -> Union[FigureCanvas, None]:
    if not cashflow.beta or not cashflow.alpha or len(cashflow.sample) < 3:
        raise InputValidationError(
            "Cashflow model does not contain enough information to be plotted")

    canvas = FigureCanvas(Figure())
    figure = canvas.figure
    axes = figure.subplots()

    sup_title_str = f'{ticker} Dividend Linear Regression Model'
    title_str = f'NPV(dividends | discount = {round(cashflow.discount_rate,4)}) = $ {round(cashflow.calculate_net_present_value(), 2)}'

    dividend_history, ordinal_x, dates = [], [], []
    for date in cashflow.sample:
        dates.append(date)
        ordinal_x.append(datetime.datetime.strptime(
            date, '%Y-%m-%d').toordinal())
        dividend_history.append(cashflow.sample[date])

    dates.reverse()

    model_map = list(map(lambda x: cashflow.alpha +
                     cashflow.beta*x, cashflow.time_series))

    axes.scatter(ordinal_x, dividend_history, marker=".")
    axes.plot(ordinal_x, model_map)
    axes.grid()
    # axes.xaxis.set_major_formatter(date_format)
    axes.set_xticklabels(dates)
    axes.set_ylabel('Dividend Amount')
    axes.set_xlabel('Payment Date')
    axes.set_title(title_str, fontsize=12)
    figure.suptitle(sup_title_str, fontsize=18)
    figure.autofmt_xdate()

    return _show_or_save(canvas=canvas, show=show, savefile=savefile)

Functions

def plot_cashflow(ticker: str, cashflow: Cashflow, show: bool = True, savefile: str = None) ‑> Optional[matplotlib.backends.backend_qtagg.FigureCanvasQTAgg]
Expand source code
def plot_cashflow(ticker: str, cashflow: Cashflow, show: bool = True, savefile: str = None) -> Union[FigureCanvas, None]:
    if not cashflow.beta or not cashflow.alpha or len(cashflow.sample) < 3:
        raise InputValidationError(
            "Cashflow model does not contain enough information to be plotted")

    canvas = FigureCanvas(Figure())
    figure = canvas.figure
    axes = figure.subplots()

    sup_title_str = f'{ticker} Dividend Linear Regression Model'
    title_str = f'NPV(dividends | discount = {round(cashflow.discount_rate,4)}) = $ {round(cashflow.calculate_net_present_value(), 2)}'

    dividend_history, ordinal_x, dates = [], [], []
    for date in cashflow.sample:
        dates.append(date)
        ordinal_x.append(datetime.datetime.strptime(
            date, '%Y-%m-%d').toordinal())
        dividend_history.append(cashflow.sample[date])

    dates.reverse()

    model_map = list(map(lambda x: cashflow.alpha +
                     cashflow.beta*x, cashflow.time_series))

    axes.scatter(ordinal_x, dividend_history, marker=".")
    axes.plot(ordinal_x, model_map)
    axes.grid()
    # axes.xaxis.set_major_formatter(date_format)
    axes.set_xticklabels(dates)
    axes.set_ylabel('Dividend Amount')
    axes.set_xlabel('Payment Date')
    axes.set_title(title_str, fontsize=12)
    figure.suptitle(sup_title_str, fontsize=18)
    figure.autofmt_xdate()

    return _show_or_save(canvas=canvas, show=show, savefile=savefile)
def plot_correlation_series(tickers: list, series: dict, show: bool = True, savefile: str = None) ‑> Optional[matplotlib.backends.backend_qtagg.FigureCanvasQTAgg]
Expand source code
def plot_correlation_series(tickers: list, series: dict, show: bool = True, savefile: str = None) -> Union[FigureCanvas, None]:
    start, end = list(series.keys())[-1], list(series.keys())[0]
    title = f'({tickers[0]}, {tickers[1]}) correlation time series'
    subtitle = f'{start} to {end}, rolling {settings.DEFAULT_ANALYSIS_PERIOD}-day estimate'

    canvas = FigureCanvas(Figure())
    figure = canvas.figure
    axes = figure.subplots()

    locator = mdates.AutoDateLocator()
    formatter = mdates.AutoDateFormatter(locator)

    correl_history, dates = [], []
    for date in series:
        dates.append(dater.parse(date))
        correl_history.append(series[date])

    axes.plot(dates, correl_history)
    axes.grid()
    axes.xaxis.set_major_locator(locator)
    axes.xaxis.set_major_formatter(formatter)
    axes.set_ylabel('Correlation')
    axes.set_xlabel('Dates')
    axes.set_title(subtitle, fontsize=12)
    figure.suptitle(title, fontsize=18)
    figure.autofmt_xdate()

    return _show_or_save(canvas=canvas, show=show, savefile=savefile)
def plot_frontier(portfolio: Portfolio, frontier: list, show: bool = True, savefile: str = None) ‑> Optional[matplotlib.backends.backend_qtagg.FigureCanvasQTAgg]
Expand source code
def plot_frontier(portfolio: Portfolio, frontier: list, show: bool = True, savefile: str = None) -> Union[FigureCanvas, None]:
    title = " ("
    for i, item in enumerate(portfolio.tickers):
        if i != (len(portfolio.tickers) - 1):
            title += item + ", "
        else:
            title += item + ") Efficient Frontier"

    return_profile, risk_profile = [], []
    for allocation in frontier:
        return_profile.append(portfolio.return_function(allocation))
        risk_profile.append(portfolio.volatility_function(allocation))

    canvas = FigureCanvas(Figure())
    axes = canvas.figure.subplots()

    axes.plot(risk_profile, return_profile, linestyle='dashed')
    axes.grid()
    axes.set_xlabel('Volatility')
    axes.set_ylabel('Return')
    axes.set_title(title)

    return _show_or_save(canvas=canvas, show=show, savefile=savefile)
def plot_moving_averages(ticker: str, averages: Dict[str, Dict[str, float]], show: bool = False, savefile: str = None)
Expand source code
def plot_moving_averages(ticker: str, averages: Dict[str, Dict[str, float]], show: bool = False, savefile: str = None):
    canvas = FigureCanvas(Figure())
    axes = canvas.figure.subplots()

    date_format = matplotlib.dates.DateFormatter('%m-%d')

    ma1s, ma2s, ma3s, date_range = [], [], [], []
    ma1_label, ma2_label, ma3_label = None, None, None

    for this_date, these_averages in averages.items():
        if ma1_label is None:
            ma1_label = list(these_averages.keys())[0]
        if ma2_label is None:
            ma2_label = list(these_averages.keys())[1]
        if ma3_label is None:
            ma3_label = list(these_averages.keys())[2]
        ma1s.append(list(these_averages.values())[0])
        ma2s.append(list(these_averages.values())[1])
        ma3s.append(list(these_averages.values())[2])
        if len(averages) == 1:
            date_range.append(this_date)
        else:
            date_range.append(datetime.datetime.strptime(
                this_date, '%Y-%m-%d').toordinal())

    if len(averages) == 1:
        width = formats.formats['BAR_WIDTH']
        x = numpy.arange(1)
        axes.bar(x + width, ma1s, width, color="darkgreen", label=ma1_label)
        axes.bar(x, ma2s, width, color="gold", label=ma2_label)
        axes.bar(x - width, ma3s, width, color="orangered", label=ma3_label)
        axes.set_xticks(x)
        axes.set_xticklabels([str(date_range[0])])

    else:
        x = date_range
        axes.plot(x, ma1s, linestyle="solid",
                  color="darkgreen", label=ma1_label)
        axes.plot(x, ma2s, linestyle="dotted",
                  color="gold", label=ma2_label)
        axes.plot(x, ma3s, linestyle="dashdot",
                  color="orangered", label=ma3_label)
        axes.set_xticks(x)
        date_locator = matplotlib.dates.WeekdayLocator(
            byweekday=(matplotlib.dates.WE))
        axes.xaxis.set_major_locator(date_locator)
        axes.xaxis.set_major_formatter(date_format)

    axes.set_ylabel('Annualized Logarthmic Return %')
    axes.set_xlabel('Dates')
    axes.set_title(
        f'{ticker} Annualized Return Moving Averages')
    axes.legend()
    return _show_or_save(canvas=canvas, show=show, savefile=savefile)
def plot_profiles(symbols: List[str], profiles: Dict[str, Dict[str, float]], show: bool = True, savefile: str = None, subtitle: str = None) ‑> Optional[matplotlib.backends.backend_qtagg.FigureCanvasQTAgg]
Expand source code
def plot_profiles(symbols: List[str], profiles: Dict[str, Dict[str, float]], show: bool = True, savefile: str = None, subtitle: str = None) -> Union[FigureCanvas, None]:
    canvas = FigureCanvas(Figure())

    no_symbols = len(symbols)
    axes = canvas.figure.subplots()

    title = "("
    for symbol in symbols:
        if symbols.index(symbol) != (len(symbols)-1):
            title += symbol + ", "
        else:
            title += symbol + ') Risk-Return Profile'
            if subtitle is not None:
                title += "\n" + subtitle

    return_profile, risk_profile = [], []
    for profile in profiles:
        return_profile.append(profiles[profile]['annual_return'])
        risk_profile.append(profiles[profile]['annual_volatility'])

    axes.plot(risk_profile, return_profile,
              linestyle='None', marker=".", markersize=10.0)
    axes.grid()
    axes.set_xlabel('Volatility')
    axes.set_ylabel('Return')
    axes.set_title(title)

    for i in range(no_symbols):
        axes.annotate(symbols[i], (risk_profile[i], return_profile[i]))

    return _show_or_save(canvas=canvas, show=show, savefile=savefile)

    # TODO: figure out date formatting for x-axis
def plot_qq_series(ticker: str, qq_series: list, show: bool = True, savefile: str = None) ‑> Optional[matplotlib.backends.backend_qtagg.FigureCanvasQTAgg]
Expand source code
def plot_qq_series(ticker: str, qq_series: list, show: bool = True, savefile: str = None) -> Union[FigureCanvas, None]:
    title = f'{ticker} Return Q-Q Plot'
    normal_series = []
    sample_series = []
    for point in qq_series:
        normal_series.append(point[0])
        sample_series.append(point[1])

    canvas = FigureCanvas(Figure())
    axes = canvas.figure.subplots()

    axes.plot(normal_series, sample_series,
              linestyle="None", marker=".", markersize=10.0)
    # axes.plot(normal_series, normal_series)
    axes.grid()
    axes.set_xlabel('Normal Percentiles')
    axes.set_ylabel('Sample Percentiles')
    axes.set_title(title)

    return _show_or_save(canvas=canvas, show=show, savefile=savefile)
def plot_return_histogram(ticker: str, sample: List[float], show: bool = True, savefile: str = None) ‑> Optional[matplotlib.backends.backend_qtagg.FigureCanvasQTAgg]
Expand source code
def plot_return_histogram(ticker: str, sample: List[float], show: bool = True, savefile: str = None) -> Union[FigureCanvas, None]:
    canvas = FigureCanvas(Figure())
    axes = canvas.figure.subplots()

    axes.hist(x=sample, bins=formats.formats['BINS'], density=True)
    axes.xaxis.set_major_formatter(PercentFormatter(xmax=1))
    axes.set_title(f'Distribution of {ticker} Returns')
    axes.set_xlabel('Daily Return')

    return _show_or_save(canvas=canvas, show=show, savefile=savefile)
def plot_yield_curve(yield_curve: Dict[str, List[float]], show: bool = True, savefile: str = None) ‑> Optional[matplotlib.backends.backend_qtagg.FigureCanvasQTAgg]
Expand source code
def plot_yield_curve(yield_curve: Dict[str, List[float]], show: bool = True, savefile: str = None) -> Union[FigureCanvas, None]:
    title = f'US Treasury Yield Curve On {list(yield_curve.keys())[0]}'

    canvas = FigureCanvas(Figure())
    axes = canvas.figure.subplots()

    maturities, rates = [], yield_curve[list(yield_curve.keys())[0]]
    yield_map = keys.keys['SERVICES']['STATISTICS']['QUANDL']['MAP']['YIELD_CURVE']
    for i in range(len(rates)):
        maturities.append(yield_map[keys.keys['YIELD_CURVE'][i]])

    axes.plot(maturities, rates, linestyle="dashed",
              marker=".", markersize=10.0)
    axes.grid()
    axes.set_xlabel('Maturity')
    axes.set_ylabel('Annual Yield %')
    axes.set_title(title)

    return _show_or_save(canvas=canvas, show=show, savefile=savefile)